

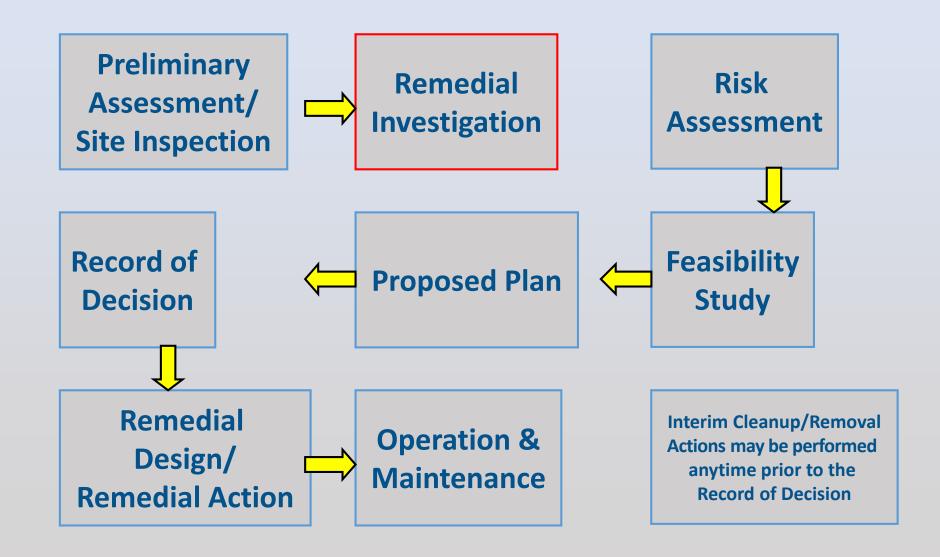
Meeting Guidelines

- Please silence cell phones.
- Be respectful and let others be heard.
- Speak into the microphone and state your name.
- Please speak only on behalf of yourself and respect one another's privacy.
- Please leave the room if you need to have a side conversation.
 Please hold your questions until the question-and-answer session after the presentations.
- Please limit your questions to two so everyone has an opportunity.

Why Are We Here?

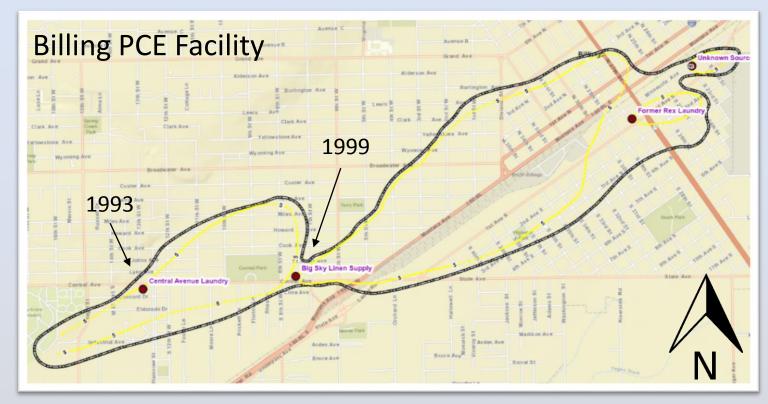
- ☐ To share Remedial Investigation results
- ☐ To talk about potential risks and screening levels
- ☐ To talk about next steps
- ☐ To answer questions

Billings PCE Groundwater Remedial Investigation


Mike Gipson, Project Officer, Montana Department of Environmental Quality July 25, 2019

CECRA-State Superfund

CECRA Process Flow Chart



Site Background

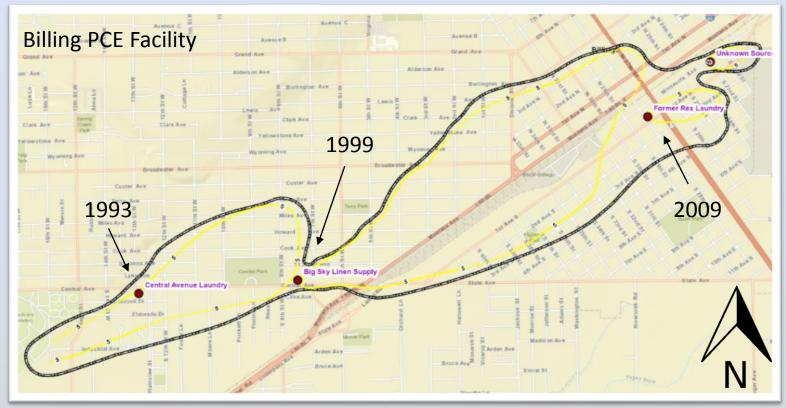
- ☐ 1991-1993: Discovery and preliminary CERCLA Investigation.
 - Central Avenue Laundry discovered first
 - Big Sky Linen discovered second
- □ 1999-2002: CERCLA SI and Expanded SI.

Groundwater contaminants have been detected inside the black line. PCE in groundwater are detected below water quality standards outside the yellow line.

Site Background

EPA Emergency Removal

- Excavated contaminated soil, built sheet pile wall, injected chemicals to breakdown contamination
- ☐ Installation of mitigation systems at 7 structures
- ☐ EPA continues to monitor

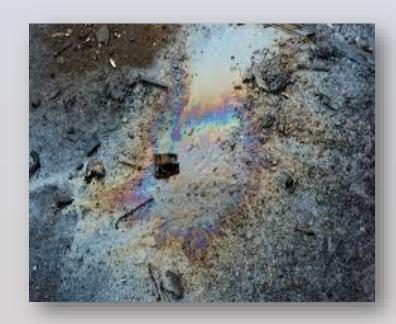


Site Background

Groundwater contaminants have been detected inside the black line. PCE in groundwater are detected below water quality standards outside the yellow line.

Post EPA removal: New data indicated solvent source near Riverstone Health Clinic area.

□ 2016 - 2018: DEQ conducted the remedial investigation.



How does the contamination behave in the environment?

☐ Some of them may sink in groundwater some may float on top of groundwater

☐ Solvents can "volatilize" or evaporate out of liquid and create a vapor

RI Samples Collected:

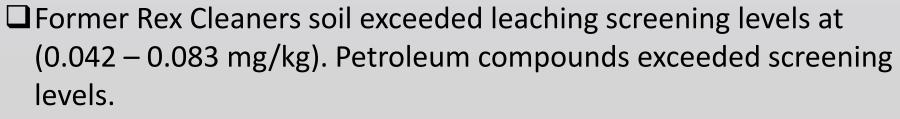
- □ 87 surface soil (0-2 feet below ground)
- ☐ 178 subsurface soil (greater than 2 feet below ground)
- ☐ 7 co-located surface water & sediment
- ☐ 371 groundwater
- ☐ 145 soil vapor & air

Storm/Surface Water & Sediment Results

Utility Corridor Investigation Results

- □ DEQ investigated utility piping conditions in the CAL, Former Rex, and Big Sky Linen source areas.
- ☐ A large hole was found in the sewer that services the Former Rex Cleaners.

Soil Results in Source Areas



 \Box CAL soil exceeded leaching screening levels. Highest sample was in the alley on the south side (0.042 – 0.17 mg/kg).

Soil Results in Source Areas

Soil Results in Source Areas

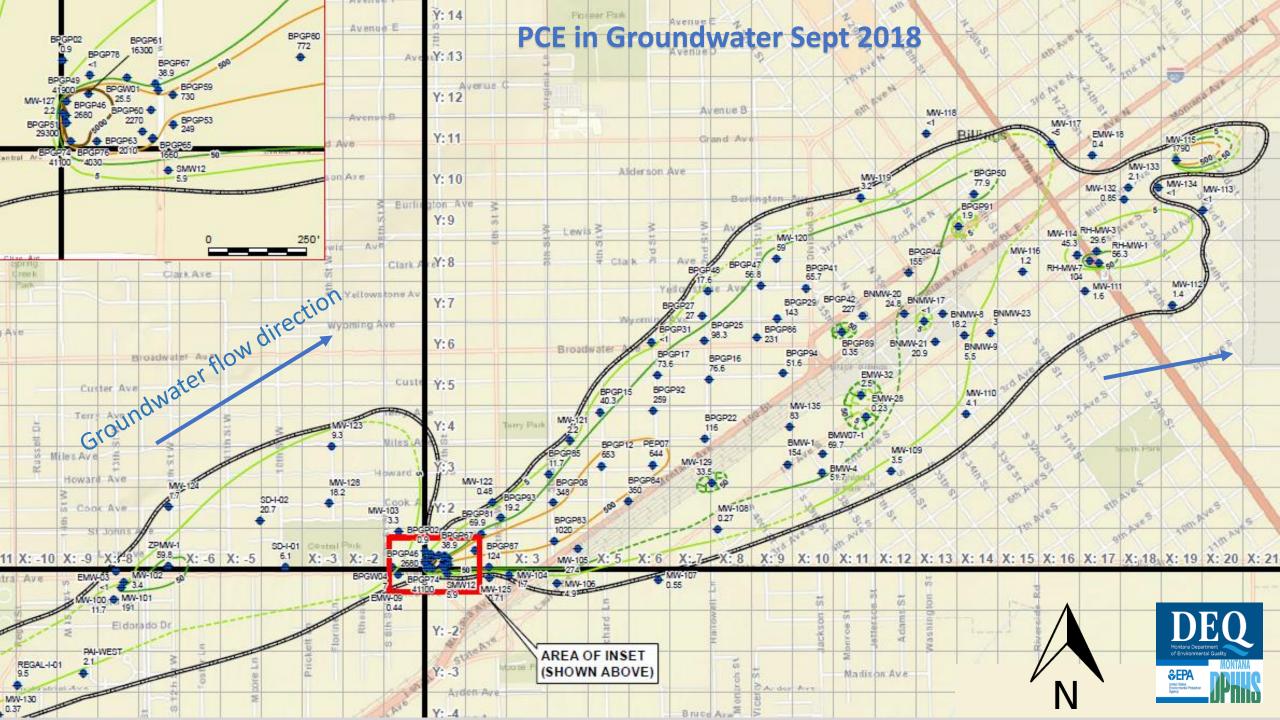
 \square Big Sky Linen soil exceeded leaching to groundwater screening levels for PCE (0.037 – 1.01 mg/kg).

☐ One sample was detected at 89.7 mg/kg collected at a depth of 16.0 feet below ground. Other petroleum compounds were also detected.

Groundwater Results

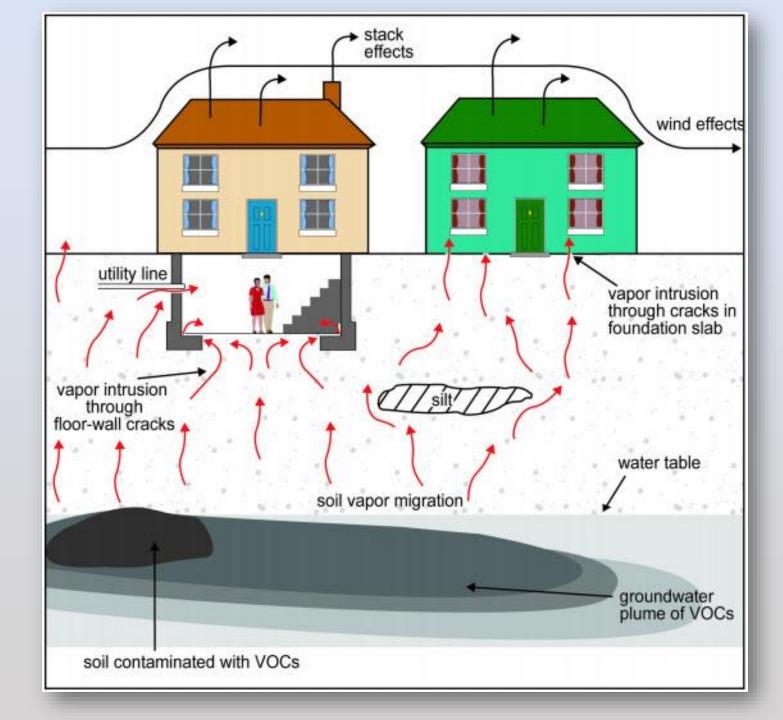
PCE	TCE
water quality standard = 5.0 μg/L	water quality standard = 5.0 μg/L
CAL = 191 μg/L	CAL = 4.3 μg/L
Former Rex Laundry = 164 μg/L	Former Rex Laundry = 22 μg/L
Unknown Source Area = 1,790 μg/L	Unknown Source Area = 72 μg/L
Big Sky Linen = 47,400 μg/L	Big Sky Linen = 444 μg/L

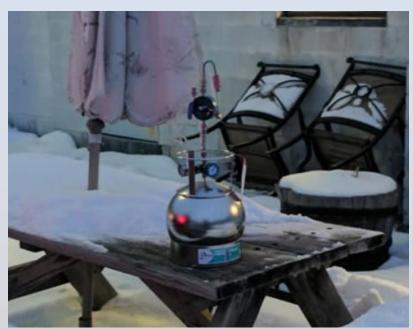
☐ PCE and TCE were the only compounds that were found across the entire site.


☐Also:

☐ Petroleum compounds: 1-methylnaphthalene, benzene, C5-C8 aliphatics, C9-C10 aromatic, C9-C12 aliphatics

☐ Metals: cobalt, manganese, and iron




What is Vapor Intrusion?

□Contaminant
vapors travels
through the
ground into
buildings.

Here is how air sampling is done

Outdoor air

Indoor air

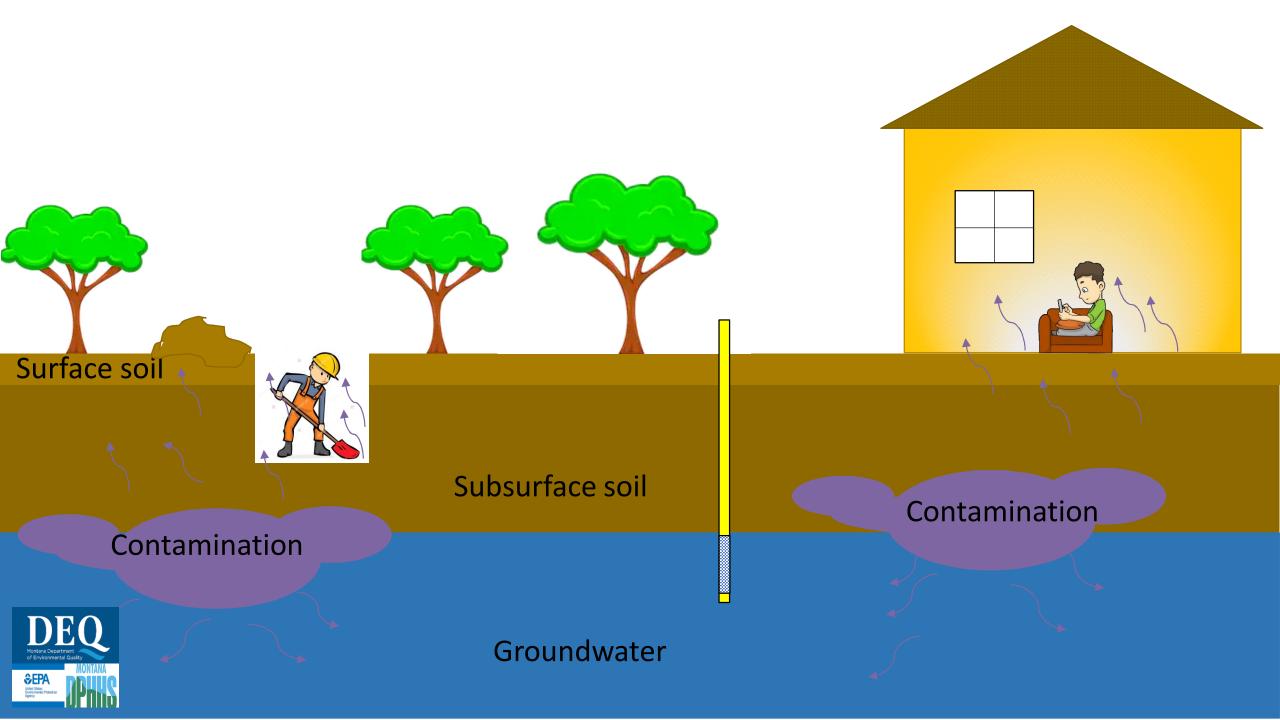
Sub-slab air

Air Results

- ☐ 49 structures sampled
- □ Air concentrations higher when groundwater PCE concentrations were greater than 50 μg/L
- ☐ Other compounds also detected
- ☐ 5 of 7 structures with mitigation systems sampled

Potential Risks and Screening Levels

Aimee Reynolds, Contaminated Site Cleanup
Bureau Chief and Risk Assessor


Lots of Data

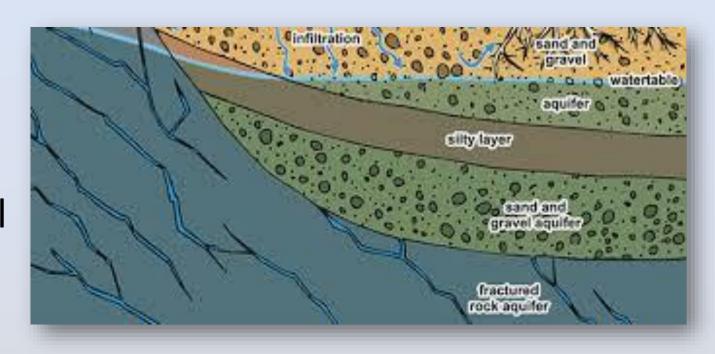
How do we decide what we need to do?

Evaluate risks

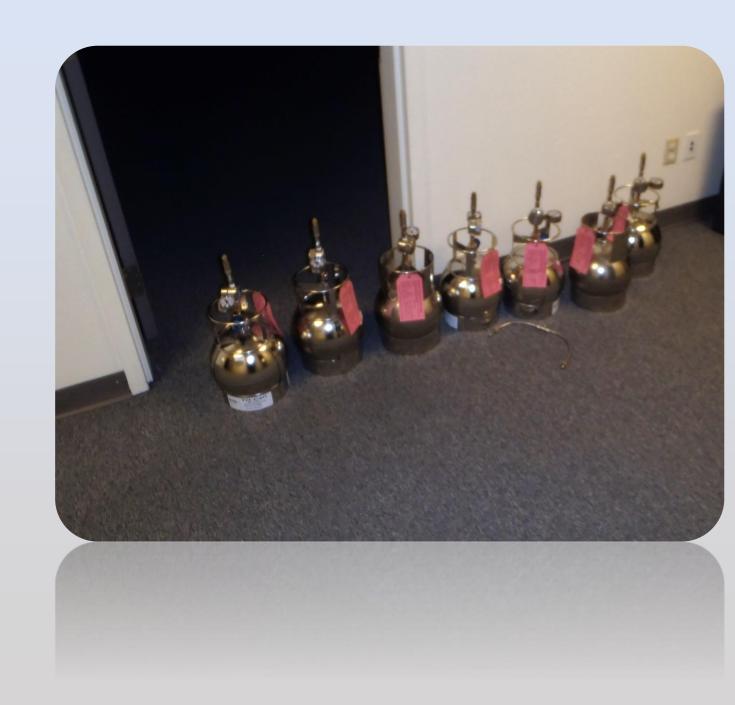
6566430860213949463952247371907021 5546873115956286388235378759375 85863278865936153381827968230

Soil

- Typical exposures:
 - Residential
 - Commercial/Industrial
 - Construction Worker
- Billings PCE Good News:
 - Soil contamination at depth
- Potential Risks:
 - Leaching to groundwater
 - Volatilization to indoor air



Groundwater


- Typical exposures:
 - Residential
 - Commercial/Industrial
 - Construction Worker
- Billings PCE Good News:
 - City water and not in water lines
 - No drinking water wells
 - Cleanup levels Water Quality Standards
- Potential Risks:
 - Consuming irrigation water
 - Volatilization to indoor air

Indoor Air

- Typical exposures:
 - Residential
 - Commercial/Industrial
- Billings PCE Focus
- Potential Risks:
 - Inhalation of vapors

How do we evaluate indoor air?

Human Health Based Screening Levels

EPA Removal Action

- Focus on PCE above 42
 micrograms per cubic meter
 (μg/m³)
- Address immediate concerns
- Removal and mitigation systems
- Stabilize the situation
- Continued monitoring

Remedial Investigation

- Discovery of other sources
- Discovery of other contaminants
- Generic EPA Regional Screening Levels (RSLs)
- Generic DEQ Screening Levels for Petroleum
- Typical Indoor Air Concentrations
- Eleven potential VI contaminants

Potential VI Contaminants

- Chlorinated Compounds:
 - Tetrachloroethene (PCE)
 - Trichloroethene (TCE)
 - Bromodichloromethane
 - Cabon Tetrachloride
 - Chloroform

- Petroleum Compounds:
 - Benzene
 - C5-C8 Aliphatics
 - C9-C12 Aliphatics
 - 1,2-Dichloroethane
 - 1,2,4-Trimethylbenzene
 - 1,3-Butadiene

Site-Specific Screening Levels

- Developed to refine our focus
- Typical indoor air concentrations
- Risk-based but site-specific

- Residential indoor air
- Commercial indoor air
- Given where we are in the process, not the final cleanup levels

Residential Human Health-Based Screening Level Basis

- Protective of residents
 - 24 hours per day
 - 350 days per year
 - 26 years of exposure
 - Averaged over 26 years or a lifetime
- Long-term exposure

Commercial Human Health-Based Screening Level Basis

- Protective of workers
 - 8 hours per day
 - 250 days per year
 - 25 years of exposure
 - Averaged over 25 years or a lifetime
- Long-term exposure

Other Factors

- Current EPA guidance
- Toxicity criteria accepted by EPA

- Cumulative potential excess lifetime cancer risk of 1 in 100,000 or 1 x 10⁻⁵ AND
- Cumulative non-cancer levels that don't cause negative health effects

What does excess lifetime cancer risk mean?

Excess lifetime cancer risk

- Humans have about a 1 in 3 chance
- Being exposed would be an extra 1 in 100,000 chance
- So if it's 33% for all of us, excess is 33.001%

What about non-cancer effects?

- Studies result in threshold concentrations:
 - expected to have low potential to cause negative health effects
 - or no potential to cause negative effects
- Toxicity criteria are developed using these concentrations
- We use these criteria to develop screening levels

What does "cumulative" mean?

The screening levels must be protective when you add up all the cancer risks and all the non-cancer risks to the same organs for each compound.

Potential Toxic Effects – Chlorinated Compounds

- Tetrachloroethene (PCE) central nervous system effects;
 also associated with liver cancer
- Trichloroethene (TCE) developmental effects; also associated with immunological effects and various cancers
- Bromodichloromethane urinary cancer
- Carbon Tetrachloride liver and glandular cancers
- Chloroform liver cancer

Potential Toxic Effects – Petroleum Compounds

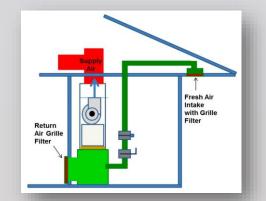
- Benzene leukemia
- C5-C8 Aliphatics nasal effects
- C9-C12 Aliphatics nasal effects; also associated with adrenal effects
- 1,2-Dichloroethane cancer of the spleen and other blood vessels
- 1,2,4-Trimethylbenzene central nervous system effects
- 1,3-Butadiene leukemia and other cancers

Current DEQ Site-Specific Screening Levels

Compound	Residential Screening Level	Commercial Screening Level
PCE	15 μg/m ³	66 μg/m ³
TCE	0.7 μg/m ³	4.2 μg/m ³
Benzene	1.3 μg/m ³	2.2 μg/m ³
Bromochloromethane	0.1 μg/m ³	0.5 μg/m ³
1,3-Butadiene	0.1 μg/m ³	0.6 μg/m ³
C5-C8 Aliphatics	313 µg/m ³	1,314 μg/m ³
C9-C12 Aliphatics	52 μg/m ³	219 μg/m ³
Carbon Tetrachloride	0.7 μg/m ³	2.8 μg/m ³
Chloroform	0.2 μg/m ³	0.7 μg/m ³
1,2-Dichloroethane	0.23 μg/m ³	0.7 μg/m ³
1,2,4-Trimethylbenzene	31 µg/m ³	131 μg/m ³

Next Steps

- More investigation needed
- Short term steps to mitigate exposure
- Long term options to address the site



Ways to reduce indoor air concentrations

- ☐ Seal cracks, seams, & penetrations
- ☐ Use vapor barriers
- ☐ Improve ventilation
- ☐ Install sub-slab depressurization system

EPA Superfund Program

Victor Ketellapper, PE
Site Assessment Program, Team Leader
USEPA Region 8, Denver, CO

Possible Next Steps

- State and local programs/funding
- Voluntary cleanup actions
- Additional EPA Superfund program removal actions
- Superfund Site Designation (National Priorities List)

EPA National Priority List Sites

- Addresses long-term threats to human health and environment
- Funding to complete further assessment, risk evaluation, and cleanup actions
- Opportunity for local community involvement and input
- Results in a permanent and protective remedy

How are sites placed on the National Priorities List

- EPA documents the eligibility for a site to be considered using the Hazard Ranking System
- State provides a support/concurrence letter
- The EPA proposes to add the site
- Public comment period
- After consideration of public comment, the EPA decides whether or not to add the site to the National Priorities List

The Hazard Ranking System (HRS)

- A screening tool
- Sites can score between 0-100, with scores > 28.5 being eligible for National Priorities List designation.
- HRS scores releases from sources of contamination that could come into contact with people or sensitive environments.
- Identifies sources of contamination to be investigated, not site boundaries

To Wrap Things Up

- ☐ Remedial Investigation results
- ☐Good news
- ☐ Potential risks and screening levels
- ☐Possible next steps
- ☐ Answer questions

Questions?

Contact Information

State Superfund Project Officer: Mike Gipson

Direct Phone Line: (406) 444-6422

Fax: (406)444-6783

Email: mgipson@mt.gov
Billings PCE Site website:

http://deq.mt.gov/Land/statesuperfund/Billings-PCE

DEQ website:

http://deq.mt.gov/Land/statesuperfund

To sign up for the Billings PCE Electronic List, send an email

to:adaniels2@mt.gov

Victor Ketallapper

Direct Phone Line: (303)312-6578 Email: ketellapper.victor@epa.gov

Jennifer Chergo

Direct Phone Line: (303)312-6601

Email: chergo.jennifer@epa.gov

Epidemiologist: Connie Garrett

Direct Phone Line: (406) 444-5954

Email: Connie.Garrett@mt.gov

State Toxicologist: Matthew Ferguson

Direct Phone Line: (406) 444-3284

Email: matthew.ferguson@mt.gov